# A Long Term Data Record from AVHRR, MODIS and VIIRS

#### Nazmi Saleous<sup>1</sup>, Eric F. Vermote<sup>2</sup>, Edward Masuoka<sup>1</sup>, Jeffrey Privette<sup>1</sup>, David Roy<sup>3</sup>, Compton Tucker<sup>1</sup>, Jorge Pinzon<sup>1</sup>, Steve Prince<sup>2</sup>

- 1. NASA Goddard Space Flight Center
- 2. University of Maryland at College Park Dept. of Geography
- 3. South Dakota State University

## Long Term Land Data Record

- Develop and produce a global long term coarse spatial resolution (0.05deg) data record from AVHRR, MODIS and VIIRS for use in global change and climate studies.
- Use a MODIS-like operational production approach including an operational QA team.
- Set up an advisory process.
- Make intermediate versions of the data sets available to the community through a web interface and solicit input from users.
- Hold community workshops for outreach and feedback.
- Prototype the development and production of a climate quality data record.

## LTDR Products

#### AVHRR, MODIS, VIIRS:

Surface reflectance

**Vegetation Indices** 

Surface temperature and emissivity

Snow

LAI/FPAR

BRDF/Albedo

Aerosols

Burned area

Products and formats will be modified based on feedback from the User Community Workshops.

## **Data Sources**



## **Existing Production Systems**

#### **AVHRR**:

- -Pathfinder AVHRR Land (PAL) data set produced and distributed by GSFC DAAC.
- -NOAA (GVI).
- -Others: e.g. GIMMS.

Differences in these products due to different processing approaches.

The most widely used is the PAL data set. However, it uses a suboptimal

radiometric degradation assumption and includes partial atmospheric correction.

#### **MODIS Terra and Aqua:**

- -Level 1 produced and distributed by GSFC DAAC.
- -Land Level 2 and higher products are generated in MODAPS at GSFC-Code 614.5 (Ed Masuoka) and distributed from the ECS DAACs.
- -Products created in this system are validated to stage 2 and have published accuracies.

#### NPP/NPOESS:

under development.

## Input Data Characteristics

- -Different over pass time
- -Different illumination and viewing geometries
- -Different spatial resolution : AVHRR (1km, 4 km), MODIS (250m, 500m, 1km), VIIRS (
- -Available spectral bands: AVHRR (1 Red, 1 NIR, 3 IR), MODIS (36 bands Blue -> IR), VIIRS (22 bands Blue -> IR)
- Onboard VIS/NIR calibration (AVHRR: No, MODIS: Yes, VIIRS: Yes)

## Relative Spectral Response



# Variable geometry impacts land surface temperature retrievals



Combined effect of:

- Vegetation structure (3D)
- Orbital characteristics
- AVHRR sensor characteristics



AVHRR 9-day periodicity over a shrubland

- Hot-spot effect (where no shadows are observed): 9 K average temperature difference
- Effects more pronounced over sparse canopies (<60% tree cover).</li>

### Daily AVHRR LST over a woodland site 330 S 320 -50 -100 View zenith angle projected fractions ₩ 0.4 -100 View zenith angle -100 View zenith angle \$ 0.4 0.0 -100 100 View zenith angle ₹ 0.4

A. Pinheiro & J. Privette (NASA GSFC)

View zenith angle

#### **Different Preprocessing: PAL vs GIMMS**



## **AVHRR and MODIS Production Systems**



#### **List of potential products:**

Surface Reflectance, VI, Surface Temperature and emissivity, Snow, LAI/FPAR, BRDF/Albedo, Aersols, burned area

#### Format:

**HDF-EOS** 

Geographic projection 1/20 deg resolution Daily, multi-day, monthly

### AVHRR data set

- AVHRR offers the longest record.
- Lacks onboard calibration.
- Limited set of spectral bands reduces the accuracy of atmospheric parameters retrieval and correction (water vapor and aerosols).
- Broad spectral bands lead to contamination by the atmosphere.
- Orbital drift leads to substantial variation in the solar geometry throughout the mission.

## Generating Improved AVHRR products

Goal to make the AVHRR data set temporally consistent and consistent with MODIS by using:

- Reliable and consistent calibration across the different NOAA platforms.
- Apply MODIS algorithms to AVHRR where possible, e.g.: the MODIS aerosol retrieval and atmospheric correction approach.
- BRDF correction to address differences in the solar and viewing geometry.
- Coincident AVHRR/MODIS to evaluate and improve AVHRR products and quantify accuracy.

### Consistent AVHRR calibration across platforms

- Use the Vermote/Kaufman calibration approach (1995)



# Approach used to validate N16 calibration with MODIS

- Select a stable calibration site.
- Characterize the reflectance spectral variation using MODIS narrow bands.
- Use 2 years of data to characterize the site BRDF using the simple linear kernel model used in the MODIS BRDF product.
  - Rigorous cloud screening is applied to the data.
  - Exclude observations within 15deg of backscattering conditions to avoid the hot spot.
  - Exclude off-nadir observations (viewing zenith angle > 50 deg) where the pixel size variation makes it difficult to select coincident observations.

## **Evaluating AVHRR calibration using MODIS**



#### Use of MODIS to improve AVHRR atmospheric corrections



Use coincident MODIS/AVHRR data to develop an approach for water vapor retrieval from AVHRR.

# Error Budget: MODIS surface reflectance and NDVI summary

| Parameter         | Accuracy                                                  |
|-------------------|-----------------------------------------------------------|
| Calibration       | 2% absolute, 1% band to band                              |
| Pressure          | ±10 mbars                                                 |
| Water vapor       | 0.2 g.cm <sup>-2</sup> (Differential absorption approach) |
| Ozone             | ±20 Dobson (EP-TOMS)                                      |
| SWIR/VIS relation | ± 0.005 reflectance units                                 |
| Aerosol type      | Smoke low/high absorption, urban polluted                 |

|                      | Forest |                       |        |        | Savanna |                       |        |        | Semi-arid |                       |        |        |  |
|----------------------|--------|-----------------------|--------|--------|---------|-----------------------|--------|--------|-----------|-----------------------|--------|--------|--|
| Reflectance/         | value  | Aerosol Optical Depth |        |        | value   | Aerosol Optical Depth |        |        | value     | Aerosol Optical Depth |        |        |  |
| NDVI                 |        | clear                 | avg    | hazy   |         | clear                 | avg    | hazy   |           | clear                 | avg    | hazy   |  |
| ? <b>3 (470 nm)</b>  | 0.012  | 0.0052                | 0.0051 | 0.0052 | 0.04    | 0.0052                | 0.0052 | 0.0053 | 0.07      | 0.0051                | 0.0053 | 0.0055 |  |
| ? <b>4 (550 nm)</b>  | 0.0375 | 0.0049                | 0.0055 | 0.0064 | 0.0636  | 0.0052                | 0.0058 | 0.0064 | 0.1246    | 0.0051                | 0.007  | 0.0085 |  |
| ? <b>1 (645 nm)</b>  | 0.024  | 0.0052                | 0.0059 | 0.0065 | 0.08    | 0.0053                | 0.0062 | 0.0067 | 0.14      | 0.0057                | 0.0074 | 0.0085 |  |
| ? <b>2 (870 nm)</b>  | 0.2931 | 0.004                 | 0.0152 | 0.0246 | 0.2226  | 0.0035                | 0.0103 | 0.0164 | 0.2324    | 0.0041                | 0.0095 | 0.0146 |  |
| ? <b>5 (1240 nm)</b> | 0.3083 | 0.0038                | 0.011  | 0.0179 | 0.288   | 0.0038                | 0.0097 | 0.0158 | 0.2929    | 0.0045                | 0.0093 | 0.0148 |  |
| ? <b>6 (1650 nm)</b> | 0.1591 | 0.0029                | 0.0052 | 0.0084 | 0.2483  | 0.0035                | 0.0066 | 0.0104 | 0.3085    | 0.0055                | 0.0081 | 0.0125 |  |
| ? <b>7 (2130 nm)</b> | 0.048  | 0.0041                | 0.0028 | 0.0042 | 0.16    | 0.004                 | 0.0036 | 0.0053 | 0.28      | 0.0056                | 0.006  | 0.0087 |  |
| NDVI                 | 0.849  | 0.03                  | 0.034  | 0.04   | 0.471   | 0.022                 | 0.028  | 0.033  | 0.248     | 0.011                 | 0.015  | 0.019  |  |

# Error Budget: AVHRR surface reflectance and NDVI summary

|             | AVHRR Pathfinder-like processing      | With LTDR improvements                           |
|-------------|---------------------------------------|--------------------------------------------------|
| Calibration | 10% absolute, 4% band to band         | 4% absolute, 2% band to band                     |
| Pressure    | ±10 mbars                             | ±10 mbars                                        |
| Water vapor | 0.7 g.cm <sup>-2</sup> (NCEP or None) | 0.3 g.cm <sup>-2</sup> (split window)            |
| Ozone       | ±30 Dobson (LONDON)                   | ±10 Dobson (EP-TOMS)                             |
| Aerosols    | No Correction                         | 0.01 error in predicting red refl. from 3.75 ? m |

|              | Forest |                       |        |        | Savanna |                       |        |        | Semi-arid |                       |        |        |  |
|--------------|--------|-----------------------|--------|--------|---------|-----------------------|--------|--------|-----------|-----------------------|--------|--------|--|
| Reflectance/ | value  | Aerosol Optical Depth |        |        | value   | Aerosol Optical Depth |        |        | value     | Aerosol Optical Depth |        |        |  |
| NDVI         |        | clear                 | avg    | hazy   |         | clear                 | avg    | hazy   |           | clear                 | avg    | hazy   |  |
| ? Ch1 (VIS)  | 0.0448 | 0.0056                | 0.051  | 0.0803 | 0.086   | 0.009                 | 0.0457 | 0.073  | 0.143     | 0.0149                | 0.039  | 0.0628 |  |
| ? Ch2 (NIR)  | 0.237  | 0.020                 | 0.0217 | 0.0338 | 0.196   | 0.0164                | 0.0225 | 0.037  | 0.217     | 0.0179                | 0.02   | 0.0349 |  |
| ? Ch3 (MIR)  | 0.045  | 0.002                 | 0.0026 | 0.0031 | 0.086   | 0.0042                | 0.0044 | 0.0046 | 0.143     | 0.0073                | 0.0074 | 0.0074 |  |
| NDVI         | 0.682  | 0.033                 | 0.195  | 0.266  | 0.392   | 0.042                 | 0.124  | 0.168  | 0.206     | 0.046                 | 0.068  | 0.090  |  |
| ? Ch1 (VIS)  | 0.0448 | 0.0101                | 0.01   | 0.01   | 0.086   | 0.0101                | 0.0101 | 0.01   | 0.143     | 0.0106                | 0.0104 | 0.0104 |  |
| ? Ch2 (NIR)  | 0.237  | 0.0085                | 0.0133 | 0.0196 | 0.196   | 0.0075                | 0.0101 | 0.0141 | 0.217     | 0.0081                | 0.0097 | 0.0132 |  |
| ? Ch3 (MIR)  | 0.045  | 0.0014                | 0.0015 | 0.0025 | 0.086   | 0.0020                | 0.0022 | 0.0026 | 0.143     | 0.003                 | 0.0033 | 0.0037 |  |
| NDVI         | 0.682  | 0.056                 | 0.058  | 0.064  | 0.392   | 0.043                 | 0.047  | 0.054  | 0.206     | 0.03                  | 0.033  | 0.038  |  |

#### **Production and Distribution**

- Use a MODAPS-like environment for production.
- Benefit from the MODIS production experience.
- -Data products will be kept online and distributed by ftp and through a web page.
- -Make intermediate data sets available for evaluators.
- -Transition the data sets to the DAAC later in the project when the datasets are validated.

### **Quality Assessment**

#### **Known Issues Tracking**



#### **Global Browse**



#### Time series analysis



**Building on the MODIS Land QA approach** 

### **Community Outreach**

- Request users input through the project's web site.
- -Workshops/Sessions held throughout the project to refine requirements and provide feedback on products.
- Publish team's evaluation of existing and intermediate datasets on the web and request input and comments from users.
- -Participation in scientific conferences and peer reviewed publications.

#### Status of the Beta data set production

- A Beta AVHRR data set is being produced for years 1981 present from NOAA-7, NOAA-9, NOAA-11, NOAA-14 and NOAA-16:
  - Vicarious calibration.
  - Cloud screening using CLAVR.
  - Atmospheric correction:
    - NCEP Reanalysis ancillary data (surface pressure, water vapor, wind speed).
    - TOMS ozone concentration.
    - NOAA TBASE DEM to refine surface pressure.
  - Binned into a global 1/20 degree resolution grid.
  - Daily products.

## Summary

- The creation of a Long Term Land Surface Data record with documented and comparable accuracy across instruments is feasible.
- The long term trend observed with precursor AVHRR datasets needs to be verified.
- The beta version of the AVHRR reflectance and NDVI data set will become available for evaluation in Early 2006.
- The user community involved in the definition and evaluation of the data sets (Pathfinder approach).
- Incremental release of the products (Beta => Provisional => Validated) as they are generated (MODIS approach).
- Updates on the project's website:

http://ltdr.nascom.nasa.gov/ltdr.html

nazmi.saleous@gsfc.nasa.gov